Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose.
نویسندگان
چکیده
We present a single-scattering model as well as a Monte Carlo model of the effect of glucose on polarized light in turbid media. Glucose alters the Mueller-matrix patterns of diffusely backscattered and forward-scattered light because glucose molecules rotate the polarization plane of linearly polarized light. For example, the angles of rotation in Mueller-matrix elements S21 and S12 are linearly related to the concentration of glucose and increase with the source-detector distance. In the nondiffusion regime, the two models agree well with each other. In the diffusion regime, the single-scattering model is invalid, but there still exists a linear relationship between the angles of rotation in the Mueller-matrix elements and the concentration of glucose, which is predicted by the Monte Carlo model.
منابع مشابه
Electric field Monte Carlo simulation of coherent backscattering of polarized light by turbid medium
A method for directly simulating coherent backscattering of polarized light by a turbid medium has been developed based on the Electric field Monte Carlo (EMC) method. Electric fields of light traveling in a pair of time-reversed paths are added coherently to simulate their interference. An efficient approach for computing the electric field of light traveling along a time-reversed path is deri...
متن کاملPropagation of polarized light in birefringent turbid media: a Monte Carlo study.
A detailed study, based on a Monte Carlo algorithm, of polarized light propagation in birefringent turbid media is presented in this paper. Linear birefringence, which results from the fibrous structures, changes the single scattering matrix and alters the polarization states of photons propagating in biological tissues. Some Mueller matrix elements of light backscattered from birefringent anis...
متن کاملBalanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms.
The use and advantages of balanced detection for making low-noise polarimetric measurements in turbid materials are demonstrated. The technique reduces the intensity noise originating from the laser and, in addition, makes possible a direct measurement of a component of the Stokes vector. When phase-locked detection is used with either amplitude or polarization modulation for polarimetric measu...
متن کاملElectric field Monte Carlo simulation of polarized light propagation in turbid media.
A Monte Carlo method based on tracing the multiply scattered electric field is presented to simulate the propagation of polarized light in turbid media. Multiple scattering of light comprises a series of updates of the parallel and perpendicular components of the complex electric field with respect to the scattering plane by the amplitude scattering matrix and rotations of the local coordinate ...
متن کاملPropagation of polarized light in birefringent turbid media: time-resolved simulations.
A Monte Carlo model was used to analyze the propagation of polarized light in linearly birefringent turbid media, such as fibrous tissues. Linearly and circularly polarized light sources were used to demonstrate the change of polarizations in turbid media with different birefringent parameters. Videos of spatially distributed polarization states of light backscattered from or propagating in bir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied optics
دوره 41 4 شماره
صفحات -
تاریخ انتشار 2002